Print Settings
 

STATS 60: Introduction to Statistical Methods: Precalculus (PSYCH 10, STATS 160)

Techniques for organizing data, computing, and interpreting measures of central tendency, variability, and association. Estimation, confidence intervals, tests of hypotheses, t-tests, correlation, and regression. Possible topics: analysis of variance and chi-square tests, computer statistical packages.
Terms: Aut, Win, Spr, Sum | Units: 5 | UG Reqs: GER:DB-Math, WAY-AQR, WAY-FR

STATS 160: Introduction to Statistical Methods: Precalculus (PSYCH 10, STATS 60)

Techniques for organizing data, computing, and interpreting measures of central tendency, variability, and association. Estimation, confidence intervals, tests of hypotheses, t-tests, correlation, and regression. Possible topics: analysis of variance and chi-square tests, computer statistical packages.
Terms: Aut, Win, Spr, Sum | Units: 5

STATS 191: Introduction to Applied Statistics

Statistical tools for modern data analysis. Topics include regression and prediction, elements of the analysis of variance, bootstrap, and cross-validation. Emphasis is on conceptual rather than theoretical understanding. Applications to social/biological sciences. Student assignments/projects require use of the software package R. Recommended: 60, 110, or 141.
Terms: Win | Units: 3-4 | UG Reqs: GER:DB-Math, WAY-AQR

STATS 198: Practical Training

For students majoring in Mathematical and Computational Science only. Students obtain employment in a relevant industrial or research activity to enhance their professional experience. Students may enroll in summer quarters only for a total of three times. For corresponding Statistics master's course see Stats 298.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable 3 times (up to 10 units total)

STATS 200: Introduction to Statistical Inference

Modern statistical concepts and procedures derived from a mathematical framework. Statistical inference, decision theory; point and interval estimation, tests of hypotheses; Neyman-Pearson theory. Bayesian analysis; maximum likelihood, large sample theory. Prerequisite: 116.
Terms: Aut, Win | Units: 3

STATS 203: Introduction to Regression Models and Analysis of Variance

Modeling and interpretation of observational and experimental data using linear and nonlinear regression methods. Model building and selection methods. Multivariable analysis. Fixed and random effects models. Experimental design. Pre- or corequisite: 200.
Terms: Win | Units: 3

STATS 209: Statistical Methods for Group Comparisons and Causal Inference (EDUC 260A, HRP 239)

Critical examination of statistical methods in social science and life sciences applications, especially for cause and effect determinations. Topics: mediating and moderating variables, potential outcomes framework, encouragement designs, multilevel models, matching and propensity score methods, analysis of covariance, instrumental variables, compliance, path analysis and graphical models, group comparisons with longitudinal data. See http://rogosateaching.com/stat209/. Prerequisite: intermediate-level statistical methods.
Terms: Win | Units: 3

STATS 211: Meta-research: Appraising Research Findings, Bias, and Meta-analysis (CHPR 206, HRP 206, MED 206)

Open to graduate, medical, and undergraduate students. Appraisal of the quality and credibility of research findings; evaluation of sources of bias. Meta-analysis as a quantitative (statistical) method for combining results of independent studies. Examples from medicine, epidemiology, genomics, ecology, social/behavioral sciences, education. Collaborative analyses. Project involving generation of a meta-research project or reworking and evaluation of an existing published meta-analysis. Prerequisite: knowledge of basic statistics.
Terms: Win | Units: 3

STATS 215: Statistical Models in Biology

Poisson and renewal processes, Markov chains in discrete and continuous time, branching processes, diffusion. Applications to models of nucleotide evolution, recombination, the Wright-Fisher process, coalescence, genetic mapping, sequence analysis. Theoretical material approximately the same as in STATS 217, but emphasis is on examples drawn from applications in biology, especially genetics. Prerequisite: 116 or equivalent.
Terms: Win | Units: 3

STATS 216: Introduction to Statistical Learning

Overview of supervised learning, with a focus on regression and classification methods. Syllabus includes: linear and polynomial regression, logistic regression and linear discriminant analysis;cross-validation and the bootstrap, model selection and regularization methods (ridge and lasso); nonlinear models, splines and generalized additive models; tree-based methods, random forests and boosting; support-vector machines; Some unsupervised learning: principal components and clustering (k-means and hierarchical). Computing is done in R, through tutorial sessions and homework assignments. This math-light course is offered via video segments (MOOC style), and in-class problem solving sessions. Prereqs: Introductory courses in statistics or probability (e.g., Stats 60), linear algebra (e.g., Math 51), and computer programming (e.g., CS 105).
Terms: Win | Units: 3

STATS 217: Introduction to Stochastic Processes I

Discrete and continuous time Markov chains, poisson processes, random walks, branching processes, first passage times, recurrence and transience, stationary distributions. Non-Statistics masters students may want to consider taking STATS 215 instead. Prerequisite: STATS 116 or consent of instructor.
Terms: Win, Sum | Units: 2-3

STATS 231: Statistical Learning Theory (CS 229T)

(Same as STATS 231) How do we formalize what it means for an algorithm to learn from data? This course focuses on developing mathematical tools for answering this question. We will present various common learning algorithms and prove theoretical guarantees about them. Topics include online learning, kernel methods, generalization bounds (uniform convergence), and spectral methods. Prerequisites: A solid background in linear algebra and probability theory, statistics and machine learning (STATS 315A or CS 229). Convex optimization (EE 364a) is helpful but not required.
Terms: Win | Units: 3

STATS 238: The Future of Finance (ECON 152, ECON 252, PUBLPOL 364)

If you are interested in a career in finance or that touches finance (computational science, economics, public policy, legal, regulatory, corporate, other), this course will give you a useful perspective. We will take on hot topics in the current landscape of the global markets as the world continues to evolve from the financial crisis. We will discuss the sweeping change underway at the policy level by regulators and legislators around the world and how this is changing business models for existing players and attracting new players to finance. The course will include guest-lecturer perspectives on where the greatest opportunities exist for students entering or touching the world of finance today including new and disruptive players in fin tech, crowd financing, block chain, robo advising, algorithmic trading, big data and other areas. New challenges such as cyber and financial warfare threats also will be addressed. While derivatives and other quantitative concepts will be handled in a non-technical way, some knowledge of finance and the capital markets is presumed. Elements used in grading: Class Participation, Attendance, Final Paper. Consent Application: To apply for this course, students must complete and email to the instructors the Consent Application Form, which will be made available on the Public Policy Program's website prior to the beginning of Winter Quarter. See Consent Application Form for submission deadline. (Cross-listed as ECON252/152, PUBLPOL364, STATS238, LAW 564.)
Terms: Win | Units: 2
Instructors: ; Beder, T. (PI)

STATS 250: Mathematical Finance (MATH 238)

Stochastic models of financial markets. Forward and futures contracts. European options and equivalent martingale measures. Hedging strategies and management of risk. Term structure models and interest rate derivatives. Optimal stopping and American options. Corequisites: MATH 236 and 227 or equivalent.
Terms: Win | Units: 3
Instructors: ; Papanicolaou, G. (PI)

STATS 260B: Workshop in Biostatistics (BIODS 260B)

Applications of statistical techniques to current problems in medical science. To receive credit for one or two units, a student must attend every workshop. To receive two units, in addition to attending every workshop, the student is required to write an acceptable one page summary of two of the workshops, with choices made by the student.
Terms: Win | Units: 1-2 | Repeatable for credit

STATS 261: Intermediate Biostatistics: Analysis of Discrete Data (BIOMEDIN 233, HRP 261)

Methods for analyzing data from case-control and cross-sectional studies: the 2x2 table, chi-square test, Fisher's exact test, odds ratios, Mantel-Haenzel methods, stratification, tests for matched data, logistic regression, conditional logistic regression. Emphasis is on data analysis in SAS. Special topics: cross-fold validation and bootstrap inference.
Terms: Win | Units: 3
Instructors: ; Sainani, K. (PI)

STATS 263: Design of Experiments (STATS 363)

Experiments vs observation. Confounding. Randomization. ANOVA.Blocking. Latin squares. Factorials and fractional factorials. Split plot. Response surfaces. Mixture designs. Optimal design. Central composite. Box-Behnken. Taguchi methods. Computer experiments and space filling designs. Prerequisites: probability at STATS 116 level or higher, and at least one course in linear models.
Terms: Win | Units: 3

STATS 270: Bayesian Statistics I (STATS 370)

This is the first of a two course sequence on modern Bayesian statistics. Topics covered include: real world examples of large scale Bayesian analysis; basic tools (models, conjugate priors and their mixtures); Bayesian estimates, tests and credible intervals; foundations (axioms, exchangeability, likelihood principle); Bayesian computations (Gibbs sampler, data augmentation, etc.); prior specification. Prerequisites: statistics and probability at the level of Stats300A, Stats305, and Stats310.
Terms: Win | Units: 3

STATS 290: Paradigms for Computing with Data

Advanced programming and computing techniques to support projects in data analysis and related research. For Statistics graduate students and others whose research involves data analysis and development of associated computational software. Prerequisites: Programming experience including familiarity with R; computing at least at the level of CS 106; statistics at the level of STATS 110 or 141.
Terms: Win | Units: 3

STATS 298: Industrial Research for Statisticians

Masters-level research as in 299, but with the approval and supervision of a faculty adviser, it must be conducted for an off-campus employer. Students must submit a written final report upon completion of the internship in order to receive credit. Repeatable for credit. Prerequisite: enrollment in Statistics M.S. program.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable 2 times (up to 2 units total)

STATS 300B: Theory of Statistics

Elementary decision theory; loss and risk functions, Bayes estimation; UMVU estimator, minimax estimators, shrinkage estimators. Hypothesis testing and confidence intervals: Neyman-Pearson theory; UMP tests and uniformly most accurate confidence intervals; use of unbiasedness and invariance to eliminate nuisance parameters. Large sample theory: basic convergence concepts; robustness; efficiency; contiguity, locally asymptotically normal experiments; convolution theorem; asymptotically UMP and maximin tests. Asymptotic theory of likelihood ratio and score tests. Rank permutation and randomization tests; jackknife, bootstrap, subsampling and other resampling methods. Further topics: sequential analysis, optimal experimental design, empirical processes with applications to statistics, Edgeworth expansions, density estimation, time series.
Terms: Win | Units: 2-4

STATS 303: PhD First Year Student Workshop

For Statistics First Year PhD students only. Discussion of relevant topics in first year student courses, consultation with PhD advisor.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable 4 times (up to 4 units total)

STATS 306A: Methods for Applied Statistics

Regression modeling extended to categorical data. Logistic regression. Loglinear models. Generalized linear models. Discriminant analysis. Categorical data models from information retrieval and Internet modeling. Prerequisite: 305 or equivalent.
Terms: Win | Units: 3

STATS 310B: Theory of Probability (MATH 230B)

Conditional expectations, discrete time martingales, stopping times, uniform integrability, applications to 0-1 laws, Radon-Nikodym Theorem, ruin problems, etc. Other topics as time allows selected from (i) local limit theorems, (ii) renewal theory, (iii) discrete time Markov chains, (iv) random walk theory,nn(v) ergodic theory. Prerequisite: 310A or MATH 230A.
Terms: Win | Units: 2-3

STATS 311: Information Theory and Statistics (EE 377)

Information theoretic techniques in probability and statistics. Fano, Assouad,nand Le Cam methods for optimality guarantees in estimation. Large deviationsnand concentration inequalities (Sanov's theorem, hypothesis testing, thenentropy method, concentration of measure). Approximation of (Bayes) optimalnprocedures, surrogate risks, f-divergences. Penalized estimators and minimumndescription length. Online game playing, gambling, no-regret learning. Prerequisites: EE 376A (or equivalent) or STATS 300A.
Terms: Win | Units: 3

STATS 315A: Modern Applied Statistics: Learning

Overview of supervised learning. Linear regression and related methods. Model selection, least angle regression and the lasso, stepwise methods. Classification. Linear discriminant analysis, logistic regression, and support vector machines (SVMs). Basis expansions, splines and regularization. Kernel methods. Generalized additive models. Kernel smoothing. Gaussian mixtures and the EM algorithm. Model assessment and selection: crossvalidation and the bootstrap. Pathwise coordinate descent. Sparse graphical models. Prerequisites: STATS 305, 306A,B or consent of instructor.
Terms: Win | Units: 2-3

STATS 319: Literature of Statistics

Literature study of topics in statistics and probability culminating in oral and written reports. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1-3 | Repeatable for credit

STATS 360: Advanced Statistical Methods for Earth System Analysis (ESS 260)

Introduction for graduate students to important issues in data analysis relevant to earth system studies. Emphasis on methodology, concepts and implementation (in R), rather than formal proofs. Likely topics include the bootstrap, non-parametric methods, regression in the presence of spatial and temporal correlation, extreme value analysis, time-series analysis, high-dimensional regressions and change-point models. Topics subject to change each year. Prerequisites: STATS 110 or equivalent.
Terms: Win | Units: 3
Instructors: ; Rajaratnam, B. (PI)

STATS 363: Design of Experiments (STATS 263)

Experiments vs observation. Confounding. Randomization. ANOVA.Blocking. Latin squares. Factorials and fractional factorials. Split plot. Response surfaces. Mixture designs. Optimal design. Central composite. Box-Behnken. Taguchi methods. Computer experiments and space filling designs. Prerequisites: probability at STATS 116 level or higher, and at least one course in linear models.
Terms: Win | Units: 3

STATS 370: Bayesian Statistics I (STATS 270)

This is the first of a two course sequence on modern Bayesian statistics. Topics covered include: real world examples of large scale Bayesian analysis; basic tools (models, conjugate priors and their mixtures); Bayesian estimates, tests and credible intervals; foundations (axioms, exchangeability, likelihood principle); Bayesian computations (Gibbs sampler, data augmentation, etc.); prior specification. Prerequisites: statistics and probability at the level of Stats300A, Stats305, and Stats310.
Terms: Win | Units: 3

STATS 376A: Information Theory (EE 376A)

The fundamental ideas of information theory. Entropy and intrinsic randomness. Data compression to the entropy limit. Huffman coding. Arithmetic coding. Channel capacity, the communication limit. Gaussian channels. Kolmogorov complexity. Asymptotic equipartition property. Information theory and Kelly gambling. Applications to communication and data compression. Prerequisite: EE178 or STATS 116, or equivalent.
Terms: Win | Units: 3

STATS 390: Consulting Workshop

Skills required of practicing statistical consultants, including exposure to statistical applications. Students participate as consultants in the department's drop-in consulting service, analyze client data, and prepare formal written reports. Seminar provides supervised experience in short term consulting. May be repeated for credit. Prerequisites: course work in applied statistics or data analysis, and consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit

STATS 396: Research Workshop in Computational Biology

Applications of Computational Statistics and Data Mining to Biological Data. Attendance mandatory. Instructor approval required.
Terms: Aut, Win, Spr | Units: 1-2 | Repeatable 3 times (up to 6 units total)

STATS 398: Industrial Research for Statisticians

Doctoral research as in 399, but must be conducted for an off-campus employer. A final report acceptable to the advisor outlining work activity, problems investigated, key results, and any follow-up projects they expect to perform is required. The report is due at the end of the quarter in which the course is taken.. May be repeated for credit. Prerequisite: Statistics Ph.D. candidate.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit
© Stanford University | Terms of Use | Copyright Complaints