Print Settings
 

CEE 48N: Managing Complex, Global Projects

This freshman seminar highlights the challenges the challenges associated with planning and executing complex and challenging global projects in private, governmental and nonprofit/NGO settings. Covers organization and project management theory, methods, and tools to optimize the design of work processes and organizations to enhance complex, global project outcomes. Student teams model and analyze the work process and organization of a real-world project team engaged in a challenging local or global project.
Terms: Win | Units: 3
Instructors: ; Levitt, R. (PI)

CEE 126: International Urbanization Seminar: Cross-Cultural Collaboration for Sustainable Urban Development (EARTHSYS 138, IPS 274, URBANST 145)

Comparative approach to sustainable cities, with focus on international practices and applicability to China. Tradeoffs regarding land use, infrastructure, energy and water, and the need to balance economic vitality, environmental quality, cultural heritage, and social equity. Student teams collaborate with Chinese faculty and students partners to support urban sustainability projects. Limited enrollment via application; see internationalurbanization.org for details. Prerequisites: consent of the instructor(s).
Terms: Aut | Units: 4-5 | UG Reqs: WAY-SI
Instructors: ; Chan, D. (PI); Hsu, K. (PI)

CEE 177S: Design for a Sustainable World (CEE 277S)

Technology-based problems faced by developing communities worldwide. Student groups partner with organizations abroad to work on concept, feasibility, design, implementation, and evaluation phases of various projects. Past projects include a water and health initiative, a green school design, seismic safety, and medical device. Admission based on written application and interview. See http://esw.stanford.edu for application. (Staff)
Terms: Spr | Units: 1-5 | Repeatable 3 times (up to 15 units total)

CEE 177X: Current Topics in Sustainable Engineering (CEE 277X)

This course is the first half of a two quarter, project-based design course that addresses the cultural, political, organizational, technical, and business issues at the heart of implementing sustainable engineering projects in the developing world. Students will be placed into one of three project teams and tackle a real-world design challenge in partnership with social entrepreneurs and NGOs. In CEE 177X/277X, students will gain the background skills and context necessary to effectively design engineering projects in developing nations. Instructor consent required.
Terms: Win | Units: 1-3 | Repeatable 20 times (up to 20 units total)
Instructors: ; Mitch, W. (PI)

CEE 224A: Sustainable Development Studio

(Undergraduates, see 124.) Project-based. Sustainable design, development, use and evolution of buildings; connections of building systems to broader resource systems. Areas include architecture, structure, materials, energy, water, air, landscape, and food. Projects use a cradle-to-cradle approach focusing on technical and biological nutrient cycles and information and knowledge generation and organization. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-5 | Repeatable for credit

CEE 224X: Global Urban Development Program

A year-long Project-Based Learning course on sustainable urban systems, in collaboration with Sechuan University, Chengdu, China. Students will form multidisciplinary teams of 8-10 and be assigned to study one of two cities: Chengdu, CN and San Jose, CA. Teams will work closely with city partners including municipal officials, industry leaders, community groups, and local academics. First phase conducing research using geospatial data analysis of key performance indicators, second and third phases to address target goals identified in phase one. Teams will propose innovative plans, policies and/or programs for urban development to meet goals. Three quarter commitment preferred, two quarter commitment required. Enrollment limited to ten Stanford students by application. Preference to CEE graduate students within CEE (SDC) and from other departments, upperclass undergraduate applications accepted.
Terms: Aut | Units: 2-5

CEE 224Y: Sustainable Systems Project: San Jose

Sustainable Urban Systems Project: San Jose is a selective opportunity to engage in a unique, real-world learning experience being piloted for a new Sustainable Urban Systems initiative within the Department of Civil and Environmental Engineering. it combines a project-based learning model with real-world problem-solving in an urban setting. Building off student work conducted in Fall and Winter quarters, Spring quarter students will work with planners in the City of San Jose to develop strategic solutions for high-priority challenges like affordable housing, stormwater management, and transit-oriented mixed-use development immersive trips to San Jose are a core part of the Spring quarter learning experience and students will engage in a variety of community activities throughout the quarter.
Terms: Win | Units: 2-5

CEE 224Z: Sustainable Urban Systems Project: San Jose

Sustainable Urban Systems Project:  San Jose is a selective opportunity to engage in a unique, real-world learning experience being piloted for a new Sustainable Urban Systems initiative within the Department of Civil and Environmental Engineering.  it combines a project-based learning model with real-world problem-solving in an urban setting.  Building off student work conducted in Fall and Winter quarters, Spring quarter students will work with planners in the City of San Jose to develop strategic solutions for high-priority challenges like affordable housing, stormwater management, and transit-oriented mixed-use development immersive trips to San Jose are a core part of the Spring quarter learning experience and students will engage in a variety of community activities throughout the quarter.
Terms: Spr | Units: 2-5

CEE 277S: Design for a Sustainable World (CEE 177S)

Technology-based problems faced by developing communities worldwide. Student groups partner with organizations abroad to work on concept, feasibility, design, implementation, and evaluation phases of various projects. Past projects include a water and health initiative, a green school design, seismic safety, and medical device. Admission based on written application and interview. See http://esw.stanford.edu for application. (Staff)
Terms: Spr | Units: 1-5 | Repeatable 3 times (up to 15 units total)

CEE 277X: Current Topics in Sustainable Engineering (CEE 177X)

This course is the first half of a two quarter, project-based design course that addresses the cultural, political, organizational, technical, and business issues at the heart of implementing sustainable engineering projects in the developing world. Students will be placed into one of three project teams and tackle a real-world design challenge in partnership with social entrepreneurs and NGOs. In CEE 177X/277X, students will gain the background skills and context necessary to effectively design engineering projects in developing nations. Instructor consent required.
Terms: Win | Units: 1-3 | Repeatable 20 times (up to 20 units total)
Instructors: ; Mitch, W. (PI)

CS 90SI: CS + Social Good: Using Web Technologies to Change the World

Learn web technologies by working on real world projects focused on creating positive social impact. The class will cover basic topics related to web development and provide resources for more advanced learning. Students will work on small teams to implement high-impact projects for partner organizations. The aim of the class is to empower students to leverage technology for social good by inspiring action, facilitating collaboration, and forging pathways toward change. No web application experience required. Prerequisite: 106B. Application required; apply online at http://bit.ly/90siApp. Applications accepted until midnight on September 14th.
Terms: Aut | Units: 2
Instructors: ; Cain, J. (PI)

CS 106B: Programming Abstractions (ENGR 70B)

Abstraction and its relation to programming. Software engineering principles of data abstraction and modularity. Object-oriented programming, fundamental data structures (such as stacks, queues, sets) and data-directed design. Recursion and recursive data structures (linked lists, trees, graphs). Introduction to time and space complexity analysis. Uses the programming language C++ covering its basic facilities. Prerequisite: 106A or equivalent. Summer quarter enrollment is limited.
Terms: Aut, Win, Spr, Sum | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-FR

CS 106X: Programming Abstractions (Accelerated) (ENGR 70X)

Intensive version of 106B for students with a strong programming background interested in a rigorous treatment of the topics at an accelerated pace. Additional advanced material and more challenging projects. Prerequisite: excellence in 106A or equivalent, or consent of instructor.
Terms: Aut, Win | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-FR

CS 377E: Designing Solutions to Global Grand Challenges

In this course we creatively apply information technologies to collectively attack Global Grand Challenges (e.g., global warming, rising healthcare costs and declining access, and ensuring quality education for all). This quarter we will focus on assisting refugees. Interdisciplinary student teams will carry out need-finding within a target domain, followed by brainstorming to propose a quarter long project. Teams will spend the rest of the quarter applying user-centered design methods to rapidly iterate through design, prototyping, and testing of their solutions. This course will interweave a weekly lecture with a weekly studio session where students apply the techniques hands-on in a small-scale, supportive environment.
Terms: Spr | Units: 3-4

EE 46: Engineering For Good: Save the World and Have Fun Doing It

Projects that provide immediate and positive impact on the world. Focus is on global health by learning from experts in this field. Students work on real-world projects with help from members of NGOs and social entrepreneurial companies as part of the hand-on learning experience. Prerequisite: ENGR 40 or EE 122A or CS 106B or consent of instructor.
Terms: Spr | Units: 3
Instructors: ; Le, M. (PI); Pokharel, P. (TA)

ENGR 70B: Programming Abstractions (CS 106B)

Abstraction and its relation to programming. Software engineering principles of data abstraction and modularity. Object-oriented programming, fundamental data structures (such as stacks, queues, sets) and data-directed design. Recursion and recursive data structures (linked lists, trees, graphs). Introduction to time and space complexity analysis. Uses the programming language C++ covering its basic facilities. Prerequisite: 106A or equivalent. Summer quarter enrollment is limited.
Terms: Aut, Win, Spr, Sum | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-FR

ENGR 110: Perspectives in Assistive Technology (ENGR 110) (ENGR 210)

Seminar and student project course. Explores the medical, social, ethical, and technical challenges surrounding the design, development, and use of technologies that improve the lives of people with disabilities and older adults. Guest lecturers include engineers, clinicians, and individuals with disabilities. Tours of local facilities, assistive technology faire, and movie screening. Juniors, seniors, and graduate students from any discipline welcome. Enrollment limited to class capacity of 45. 1 unit for seminar attendance only (CR/NC) or individual project (letter grade). 3 units for students who pursue a team-based assistive technology project. Projects can be continued as independent study in Spring Quarter. See http://engr110.stanford.edu/. Service Learning Course (certified by Haas Center for Public Service).
Terms: Win | Units: 1-3
Instructors: ; Jaffe, D. (PI)

ENGR 119: Community Engagement Preparation Seminar (ENGR 219)

This seminar is designed for engineering students who have already committed to an experiential learning program working directly with a community partner on a project of mutual benefit. This seminar is targeted at students participating in the Summer Service Learning Program offered through Stanford¿s Global Engineering Program.
Terms: Spr | Units: 1

ENGR 210: Perspectives in Assistive Technology (ENGR 110) (ENGR 110)

Seminar and student project course. Explores the medical, social, ethical, and technical challenges surrounding the design, development, and use of technologies that improve the lives of people with disabilities and older adults. Guest lecturers include engineers, clinicians, and individuals with disabilities. Tours of local facilities, assistive technology faire, and movie screening. Juniors, seniors, and graduate students from any discipline welcome. Enrollment limited to class capacity of 45. 1 unit for seminar attendance only (CR/NC) or individual project (letter grade). 3 units for students who pursue a team-based assistive technology project. Projects can be continued as independent study in Spring Quarter. See http://engr110.stanford.edu/. Service Learning Course (certified by Haas Center for Public Service).
Terms: Win | Units: 1-3
Instructors: ; Jaffe, D. (PI)

ENGR 219: Community Engagement Preparation Seminar (ENGR 119)

This seminar is designed for engineering students who have already committed to an experiential learning program working directly with a community partner on a project of mutual benefit. This seminar is targeted at students participating in the Summer Service Learning Program offered through Stanford¿s Global Engineering Program.
Terms: Spr | Units: 1

ME 105: Designing for Impact

This course will introduce the design thinking process and skills, and explore unique challenges of solving problems and initiating action for public good. Design skills such as need-finding, insight development, and prototyping will be learned through project work, with a particular emphasis on the elements required to be effective in the social sector. Prerequisite: ME101.
Terms: Spr | Units: 3
Instructors: ; Benjamin, C. (PI)

ME 177: Global Engineers' Education

A project based course for those who would like to use their engineering backgrounds to address real world challenges faced by underserved communities globally. In direct collaboration with an underserved community from a rural village in India, students will develop engineering solutions to the challenge of sanitation and hygiene. Focus will be on working with the community rather than for them. Concepts covered will include designing with what designers care about at the center, articulating and realizing individual and community aspirations, ethics of engaging with underserved communities, and methodology of working sustainably with an underserved community.
Terms: Spr | Units: 3
Instructors: ; Hariharan, B. (PI)

MS&E 108: Senior Project

Restricted to MS&E majors in their senior year. Students carry out a major project in groups of four, applying techniques and concepts learned in the major. Project work includes problem identification and definition, data collection and synthesis, modeling, development of feasible solutions, and presentation of results. Service Learning Course (certified by Haas Center).
Terms: Win | Units: 5
© Stanford University | Terms of Use | Copyright Complaints