Print Settings
 

CME 336: Linear and Conic Optimization with Applications (MS&E 314)

Linear, semidefinite, conic, and convex nonlinear optimization problems as generalizations of classical linear programming. Algorithms include the interior-point, barrier function, and cutting plane methods. Related convex analysis, including the separating hyperplane theorem, Farkas lemma, dual cones, optimality conditions, and conic inequalities. Complexity and/or computation efficiency analysis. Applications to combinatorial optimization, sensor network localization, support vector machine, and graph realization. Prerequisite: MS&E 211 or equivalent.
Terms: Win | Units: 3
Instructors: ; Ye, Y. (PI)

MS&E 211: Linear and Nonlinear Optimization

Optimization theory and modeling. The role of prices, duality, optimality conditions, and algorithms in finding and recognizing solutions. Perspectives: problem formulation, analytical theory, computational methods, and recent applications in engineering, finance, and economics. Theories: finite dimensional derivatives, convexity, optimality, duality, and sensitivity. Methods: simplex and interior-point, gradient, Newton, and barrier. Prerequisite: CME 100 or MATH 51.
Terms: Aut | Units: 3-4
Instructors: ; Goel, A. (PI)

MS&E 314: Linear and Conic Optimization with Applications (CME 336)

Linear, semidefinite, conic, and convex nonlinear optimization problems as generalizations of classical linear programming. Algorithms include the interior-point, barrier function, and cutting plane methods. Related convex analysis, including the separating hyperplane theorem, Farkas lemma, dual cones, optimality conditions, and conic inequalities. Complexity and/or computation efficiency analysis. Applications to combinatorial optimization, sensor network localization, support vector machine, and graph realization. Prerequisite: MS&E 211 or equivalent.
Terms: Win | Units: 3
Instructors: ; Ye, Y. (PI)
© Stanford University | Terms of Use | Copyright Complaints