Print Settings
 

BIODS 237: Deep Learning in Genomics and Biomedicine (BIOMEDIN 273B, CS 273B, GENE 236)

Recent breakthroughs in high-throughput genomic and biomedical data are transforming biological sciences into "big data" disciplines. In parallel, progress in deep neural networks are revolutionizing fields such as image recognition, natural language processing and, more broadly, AI. This course explores the exciting intersection between these two advances. The course will start with an introduction to deep learning and overview the relevant background in genomics and high-throughput biotechnology, focusing on the available data and their relevance. It will then cover the ongoing developments in deep learning (supervised, unsupervised and generative models) with the focus on the applications of these methods to biomedical data, which are beginning to produced dramatic results. In addition to predictive modeling, the course emphasizes how to visualize and extract interpretable, biological insights from such models. Recent papers from the literature will be presented and discussed. Students will be introduced to and work with popular deep learning software frameworks. Students will work in groups on a final class project using real world datasets. Prerequisites: College calculus, linear algebra, basic probability and statistics such as CS109, and basic machine learning such as CS229. No prior knowledge of genomics is necessary.
Terms: Aut | Units: 3

BIOMEDIN 273B: Deep Learning in Genomics and Biomedicine (BIODS 237, CS 273B, GENE 236)

Recent breakthroughs in high-throughput genomic and biomedical data are transforming biological sciences into "big data" disciplines. In parallel, progress in deep neural networks are revolutionizing fields such as image recognition, natural language processing and, more broadly, AI. This course explores the exciting intersection between these two advances. The course will start with an introduction to deep learning and overview the relevant background in genomics and high-throughput biotechnology, focusing on the available data and their relevance. It will then cover the ongoing developments in deep learning (supervised, unsupervised and generative models) with the focus on the applications of these methods to biomedical data, which are beginning to produced dramatic results. In addition to predictive modeling, the course emphasizes how to visualize and extract interpretable, biological insights from such models. Recent papers from the literature will be presented and discussed. Students will be introduced to and work with popular deep learning software frameworks. Students will work in groups on a final class project using real world datasets. Prerequisites: College calculus, linear algebra, basic probability and statistics such as CS109, and basic machine learning such as CS229. No prior knowledge of genomics is necessary.
Terms: Aut | Units: 3

CS 109: Introduction to Probability for Computer Scientists

Topics include: counting and combinatorics, random variables, conditional probability, independence, distributions, expectation, point estimation, and limit theorems. Applications of probability in computer science including machine learning and the use of probability in the analysis of algorithms. Prerequisites: 103, 106B or X, multivariate calculus at the level of MATH 51 or CME 100 or equivalent.
Terms: Win, Spr, Sum | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-FR

CS 109L: Statistical Computing with R Laboratory

Supplemental lab to CS109. Introduces the R programming language for statistical computing. Topics include basic facilities of R including mathematical, graphical, and probability functions, building simulations, introductory data fitting and machine learning. Provides exposure to the functional programming paradigm. Corequisite: CS109.
Last offered: Spring 2015 | Units: 1

CS 124: From Languages to Information (LINGUIST 180, LINGUIST 280)

Extracting meaning, information, and structure from human language text, speech, web pages, genome sequences, social networks. Methods include: string algorithms, edit distance, language modeling, the noisy channel, naive Bayes, inverted indices, collaborative filtering, PageRank. Applications such as question answering, sentiment analysis, information retrieval, text classification, social network models, chatbots, genomic sequence alignment, spell checking, speech processing, recommender systems. Prerequisite: CS103, CS107, CS109.
Terms: Win | Units: 3-4

CS 246: Mining Massive Data Sets

The course will discuss data mining and machine learning algorithms for analyzing very large amounts of data. The emphasis will be on Map Reduce as a tool for creating parallel algorithms that can process very large amounts of data. Topics include: Frequent itemsets and Association rules, Near Neighbor Search in High Dimensional Data, Locality Sensitive Hashing (LSH), Dimensionality reduction, Recommender Systems, Clustering, Link Analysis, Large-scale machine learning, Data streams, Analysis of Social-network Graphs, and Web Advertising. Prerequisites: At lease one of CS107 or CS145; At least one of CS109 or STAT116, or equivalent.
Terms: Win | Units: 3-4

CS 250: Error Correcting Codes: Theory and Applications (EE 387)

Introduction to the theory of error correcting codes, emphasizing diverse applications throughout computer science and engineering. Topics include basic bounds on error correcting codes; constructions like Reed-Solomon, Reed-Muller, and expander codes; list-decoding, list-recovery and locality. Applications include communication, storage, complexity theory, pseudorandomness, cryptography, streaming algorithms, group testing, and com-pressed sensing. Prerequisites: Linear algebra, basic probability (at the level of, say, CS109, CME106 or EE178), and ¿mathematical maturity¿ (students will be asked to write proofs). Familiarity with finite fields will be helpful but not required.
Terms: Aut | Units: 3

CS 273B: Deep Learning in Genomics and Biomedicine (BIODS 237, BIOMEDIN 273B, GENE 236)

Recent breakthroughs in high-throughput genomic and biomedical data are transforming biological sciences into "big data" disciplines. In parallel, progress in deep neural networks are revolutionizing fields such as image recognition, natural language processing and, more broadly, AI. This course explores the exciting intersection between these two advances. The course will start with an introduction to deep learning and overview the relevant background in genomics and high-throughput biotechnology, focusing on the available data and their relevance. It will then cover the ongoing developments in deep learning (supervised, unsupervised and generative models) with the focus on the applications of these methods to biomedical data, which are beginning to produced dramatic results. In addition to predictive modeling, the course emphasizes how to visualize and extract interpretable, biological insights from such models. Recent papers from the literature will be presented and discussed. Students will be introduced to and work with popular deep learning software frameworks. Students will work in groups on a final class project using real world datasets. Prerequisites: College calculus, linear algebra, basic probability and statistics such as CS109, and basic machine learning such as CS229. No prior knowledge of genomics is necessary.
Terms: Aut | Units: 3

EE 387: Error Correcting Codes: Theory and Applications (CS 250)

Introduction to the theory of error correcting codes, emphasizing diverse applications throughout computer science and engineering. Topics include basic bounds on error correcting codes; constructions like Reed-Solomon, Reed-Muller, and expander codes; list-decoding, list-recovery and locality. Applications include communication, storage, complexity theory, pseudorandomness, cryptography, streaming algorithms, group testing, and com-pressed sensing. Prerequisites: Linear algebra, basic probability (at the level of, say, CS109, CME106 or EE178), and ¿mathematical maturity¿ (students will be asked to write proofs). Familiarity with finite fields will be helpful but not required.
Terms: Aut | Units: 3

GENE 236: Deep Learning in Genomics and Biomedicine (BIODS 237, BIOMEDIN 273B, CS 273B)

Recent breakthroughs in high-throughput genomic and biomedical data are transforming biological sciences into "big data" disciplines. In parallel, progress in deep neural networks are revolutionizing fields such as image recognition, natural language processing and, more broadly, AI. This course explores the exciting intersection between these two advances. The course will start with an introduction to deep learning and overview the relevant background in genomics and high-throughput biotechnology, focusing on the available data and their relevance. It will then cover the ongoing developments in deep learning (supervised, unsupervised and generative models) with the focus on the applications of these methods to biomedical data, which are beginning to produced dramatic results. In addition to predictive modeling, the course emphasizes how to visualize and extract interpretable, biological insights from such models. Recent papers from the literature will be presented and discussed. Students will be introduced to and work with popular deep learning software frameworks. Students will work in groups on a final class project using real world datasets. Prerequisites: College calculus, linear algebra, basic probability and statistics such as CS109, and basic machine learning such as CS229. No prior knowledge of genomics is necessary.
Terms: Aut | Units: 3
Instructors: ; Kundaje, A. (PI); Zou, J. (PI)

LINGUIST 180: From Languages to Information (CS 124, LINGUIST 280)

Extracting meaning, information, and structure from human language text, speech, web pages, genome sequences, social networks. Methods include: string algorithms, edit distance, language modeling, the noisy channel, naive Bayes, inverted indices, collaborative filtering, PageRank. Applications such as question answering, sentiment analysis, information retrieval, text classification, social network models, chatbots, genomic sequence alignment, spell checking, speech processing, recommender systems. Prerequisite: CS103, CS107, CS109.
Terms: Win | Units: 3-4

LINGUIST 280: From Languages to Information (CS 124, LINGUIST 180)

Extracting meaning, information, and structure from human language text, speech, web pages, genome sequences, social networks. Methods include: string algorithms, edit distance, language modeling, the noisy channel, naive Bayes, inverted indices, collaborative filtering, PageRank. Applications such as question answering, sentiment analysis, information retrieval, text classification, social network models, chatbots, genomic sequence alignment, spell checking, speech processing, recommender systems. Prerequisite: CS103, CS107, CS109.
Terms: Win | Units: 3-4
© Stanford University | Terms of Use | Copyright Complaints