Print Settings
 

GEOPHYS 70: The Water Course (EARTHSYS 104)

The Central Valley of California provides a third of the produce grown in the U.S., but has a desert climate, thus raising concerns about both food and water security. The pathway that water takes rainfall to the irrigation of fields (the water course) determines the quantity and quality of the available water. Working with various data sources (remote sensing, gauges, wells) allows us to model the water budget in the valley and explore the way in which recent droughts and increasing demand are impacting freshwater supplies.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

GEOPHYS 118Y: Sustainable Urban Systems Project (CEE 124Y, CEE 224Y, GEOPHYS 218Y)

Sustainable Urban Systems (SUS) Project is a project-based learning experience being piloted for an upcoming new SUS M.S. Program within CEE. Students are placed in small interdisciplinary teams (engineers and non-engineers, undergraduate and graduate level) to work on complex design, engineering, and policy problems presented by external partners in a real urban setting. Multiple projects are offered throughout the academic year and may span multiple quarters. Students are expected to interact with professionals and community stakeholders, conduct independent team work outside of class sessions, and submit deliverables over a series of milestones. To view project descriptions and apply, visit http://sus.stanford.edu/courses/.
Terms: Win | Units: 1-5 | Grading: Letter or Credit/No Credit

GEOPHYS 118Z: Sustainable Urban Systems Project (CEE 124Z, CEE 224Z, GEOPHYS 218Z)

Sustainable Urban Systems (SUS) Project is a project-based learning experience being piloted for an upcoming new SUS M.S. Program within CEE. Students are placed in small interdisciplinary teams (engineers and non-engineers, undergraduate and graduate level) to work on complex design, engineering, and policy problems presented by external partners in a real urban setting. Multiple projects are offered throughout the academic year and may span multiple quarters. Students are expected to interact with professionals and community stakeholders, conduct independent team work outside of class sessions, and submit deliverables over a series of milestones. To view project descriptions and apply, visit http://sus.stanford.edu/courses/.
Terms: Spr | Units: 1-5 | Grading: Letter or Credit/No Credit

GEOPHYS 141: Remote Sensing of the Oceans (EARTHSYS 141, EARTHSYS 241, ESS 141, ESS 241)

How to observe and interpret physical and biological changes in the oceans using satellite technologies. Topics: principles of satellite remote sensing, classes of satellite remote sensors, converting radiometric data into biological and physical quantities, sensor calibration and validation, interpreting large-scale oceanographic features.
Terms: Win | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-AQR | Grading: Letter or Credit/No Credit

GEOPHYS 196: Undergraduate Research in Geophysics

Field-, lab-, or computer-based. Faculty supervision. Written reports.
Terms: Aut, Win, Spr, Sum | Units: 1-10 | Repeatable for credit | Grading: Letter or Credit/No Credit

GEOPHYS 197: Senior Thesis in Geophysics

For seniors writing a thesis based on Geophysics research in 196 or as a summer research fellow. Seniors defend the results of their research at a public oral presentation.
Terms: Aut, Win, Spr, Sum | Units: 3-5 | Grading: Letter or Credit/No Credit

GEOPHYS 198: Honors Program

Experimental, observational, or theoretical honors project and thesis in geophysics under supervision of a faculty member. Students who elect to do an honors thesis should begin planning it no later than Winter Quarter of the junior year. Prerequisites: department approval. Seniors defend the results of their research at a public oral presentation.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit | Grading: Letter or Credit/No Credit

GEOPHYS 211: Environmental Soundings Image Estimation

Imaging principles exemplified by means of imaging geophysical data of various uncomplicated types (bathymetry, altimetry, velocity, reflectivity). Adjoints, back projection, conjugate-gradient inversion, preconditioning, multidimensional autoregression and spectral factorization, the helical coordinate, and object-based programming. Common recurring issues such as limited aperture, missing data, signal/noise segregation, and nonstationary spectra. See http://sep.stanford.edu/sep/prof/.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

GEOPHYS 218Y: Sustainable Urban Systems Project (CEE 124Y, CEE 224Y, GEOPHYS 118Y)

Sustainable Urban Systems (SUS) Project is a project-based learning experience being piloted for an upcoming new SUS M.S. Program within CEE. Students are placed in small interdisciplinary teams (engineers and non-engineers, undergraduate and graduate level) to work on complex design, engineering, and policy problems presented by external partners in a real urban setting. Multiple projects are offered throughout the academic year and may span multiple quarters. Students are expected to interact with professionals and community stakeholders, conduct independent team work outside of class sessions, and submit deliverables over a series of milestones. To view project descriptions and apply, visit http://sus.stanford.edu/courses/.
Terms: Win | Units: 1-5 | Grading: Letter or Credit/No Credit

GEOPHYS 218Z: Sustainable Urban Systems Project (CEE 124Z, CEE 224Z, GEOPHYS 118Z)

Sustainable Urban Systems (SUS) Project is a project-based learning experience being piloted for an upcoming new SUS M.S. Program within CEE. Students are placed in small interdisciplinary teams (engineers and non-engineers, undergraduate and graduate level) to work on complex design, engineering, and policy problems presented by external partners in a real urban setting. Multiple projects are offered throughout the academic year and may span multiple quarters. Students are expected to interact with professionals and community stakeholders, conduct independent team work outside of class sessions, and submit deliverables over a series of milestones. To view project descriptions and apply, visit http://sus.stanford.edu/courses/.
Terms: Spr | Units: 1-5 | Grading: Letter or Credit/No Credit

GEOPHYS 224: Seismic Reflection Processing

Workshop in computer processing of 2D and 3D seismic reflection data. Students individually process a seismic reflection profile (of their own choice or instructor-provided) from field recordings to migrated sections and subsurface images, using interactive software (OpenCPS from OpenGeophysical.com). Prerequisite: GEOPHYS 222 or consent of instructor.
Terms: not given this year | Units: 2-3 | Grading: Satisfactory/No Credit

GEOPHYS 235: Waves and Fields in Geophysics

Basic topics and approaches (theory and numerical simulations) on acoustic, electromagnetic, and elastic waves and fields for geophysical applications: dispersion, phase and group velocities, attenuation, reflection and transmission at planar interfaces, high frequency and low frequency approximations, heterogeneous media. Prerequisites: UG level class on waves or consent of instructor.
Terms: Win | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: ; Harris, J. (PI); Li, D. (TA)

GEOPHYS 255: Report on Energy Industry Training

On-the-job-training for master's and doctoral degree students under the guidance of on-site supervisors. Students submit a report detailing work activities, problems, assignment, and key results. May be repeated for credit. Prerequisite: written consent of adviser.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit | Grading: Satisfactory/No Credit

GEOPHYS 265: Imaging Radar and Applications (EE 355)

Radar remote sensing, radar image characteristics, viewing geometry, range coding, synthetic aperture processing, correlation, range migration, range/Doppler algorithms, wave domain algorithms, polar algorithm, polarimetric processing, interferometric measurements. Applications: surfafe deformation, polarimetry and target discrimination, topographic mapping surface displacements, velocities of ice fields. Prerequisites: EE261. Recommended: EE254, EE278, EE279.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

GEOPHYS 288B: Crustal Deformation

Earthquake and volcanic deformation, emphasizing analytical models that can be compared to data from GPS, InSAR, and strain meters. Viscoelasticity, post-seismic rebound, and viscoelastic magma chambers. Effects of surface topography and earth curvature on surface deformation. Gravity changes induced by deformation and elastogravitational coupling. Poro-elasticity, coupled fluid flow and deformation. Earthquake nucleation and rate-state friction. Models of earthquake cycle at plate boundaries.
Terms: Win | Units: 3-5 | Grading: Letter or Credit/No Credit

GEOPHYS 299: Teaching Experience in Geophysics

For TAs in Geophysics. Course and lecture design and preparation; lecturing practice in small groups. Classroom teaching practice in a Geophysics course for which the participant is the TA.
Terms: Spr | Units: 1 | Repeatable for credit | Grading: Credit/No Credit

GEOPHYS 308: Topics in Disaster Resilience Research (CEE 308)

This seminar will explore past and current research on disaster risk and resilience, towards the development of new frontiers in resilience engineering science research. Designed for graduate students engaged in the topic of risk and resilience research, the seminar will be organized around weekly readings and discussion groups. May be repeat for credit
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Baker, J. (PI); Soden, R. (PI)

GEOPHYS 385A: Reflection Seismology

Research in reflection seismology and petroleum prospecting. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Letter or Credit/No Credit

GEOPHYS 385B: Environmental Geophysics

Research on the use of geophysical methods for near-surface environmental problems. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Letter or Credit/No Credit
Instructors: ; Knight, R. (PI)

GEOPHYS 385D: Theoretical Geophysics

Research on physics and mechanics of earthquakes, volcanoes, ice sheets, and nglaciers. Emphasis is on developing theoretical understanding of processes governing natural phenomena.
Terms: Aut, Win, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Dunham, E. (PI)

GEOPHYS 385E: Tectonics

Research on the origin, major structures, and tectonic processes of the Earth's crust. Emphasis is on use of deep seismic reflection and refraction data. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Satisfactory/No Credit

GEOPHYS 385G: Radio Glaciology

Research on the acquisition, processing, and analysis of radio geophysical signals in observing the subsurface conditions and physical processes of ice sheets, glaciers, and icy moons.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Schroeder, D. (PI)

GEOPHYS 385L: Earthquake Seismology, Deformation, and Stress

Research on seismic source processes, crustal stress, and deformation associated with faulting and volcanism. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit

GEOPHYS 385N: Experimental Rock Physics

Research on the use of laboratory geophysical methods for the characterization of the physical properties of rocks and their response to earth stresses, temperature, and rock-fluid interactions. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Letter or Credit/No Credit
Instructors: ; Vanorio, T. (PI)

GEOPHYS 385R: Physical Volcanology

Research on volcanic processes. May be repeat for credit
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit

GEOPHYS 385S: Wave Physics

Theory, numerical simulation, and experiments on seismic and electromagnetic waves in complex porous media. Applications from Earth imaging and in situ characterization of Earth properties, including subsurface monitoring. Presentations by faculty, research staff, students, and visitors. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Harris, J. (PI)

GEOPHYS 385V: Poroelasticity

Research on the mechanical properties of porous rocks: dynamic problems of seismic velocity, dispersion, and attentuation; and quasi-static problems of faulting, fluid transport, crustal deformation, and loss of porosity. Participants define, investigate, and present an original problem of their own. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Letter or Credit/No Credit
Instructors: ; Mavko, G. (PI)

GEOPHYS 385W: GEOPHYSICAL MULTI-PHASE FLOWS

Research on the dynamics of multi-phase systems that are fundamental to many geophysical problems such as ice sheets and volcanoes.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Letter or Credit/No Credit
Instructors: ; Suckale, J. (PI)

GEOPHYS 385Z: Radio Remote Sensing

Research applications, especially crustal deformation measurements. Recent instrumentation and system advancements. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-2 | Repeatable for credit | Grading: Letter or Credit/No Credit
© Stanford University | Terms of Use | Copyright Complaints