Print Settings
 

BIOHOPK 14: Bio-logging and Bio-telemetry

Bio-logging is a rapidly growing discipline that includes diverse fields such as consumer electronics, medicine, and marine biology. The use of animal-attached digital tags is a powerful approach to study the movement and ecology of individuals over a wide range of temporal and spatial scales. This course is an introduction to bio-logging methods and analysis. Using whales as a model system, students will learn how use multi-sensor tags to study behavioral biomechanics.
Terms: Spr | Units: 3 | UG Reqs: WAY-AQR, WAY-SMA

BIOHOPK 47: Introduction to Research in Ecology and Ecological Physiology

This course is a field-based inquiry into rocky intertidal shores that introducesnstudents to ecology and environmental physiology and the research methods used to study them. Students will learn how to detect patterns quantitatively in nature through appropriate sampling methods & statistical analysis. Following exploration of appropriate background material in class and through exploration of the scientific literature, students will learn how to formulate testable hypotheses regarding the underlying causes of the patterns they discern. A variety of different aspects of ecology and physiology will be investigated cooperatively by the students during the quarter, culminating in development of an individual final paper in the form of a research proposal based on data collected during the course. The course will provide a broad conceptual introduction to the underlying biological principles that influence adaptation to the planet¿s dynamic habitats, as well as inquiry-based experience in how to explore and understand complex systems in nature. nThis course fulfills the same laboratory requirement as BIO 47. Satisfies WIM in Biology.
Terms: Spr | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIOHOPK 81: Introduction to Ecology

The course is designed to provide background on key concepts in ecology, familiarize students with key ecological processes and ecosystems, and the methods used in ecological studies. The course will further build students¿ skills in critical scientific thinking, reading the literature, and scientific communication. A major goal of the course is to train students to ask questions in ecology, and to design, conduct and report studies addressing these questions. Thus, emphasis is also placed, in additional to general ecological concepts, on field observations, experimental design, and the analysis, interpretation and presentation of ecological data (through computer laboratories, written assignments and presentations). Written assignments, presentations and discussions are designed to provide experience in organizing and presenting information and to expose students to multiple perspectives on ecological processes and their applications.nThis course fulfills the same requirement as BIO 81.
Terms: Spr | Units: 4

BIOHOPK 84: Physiology

This course will examine basic physiological systems of vertebrate and invertebrate animals, including nerve and muscle, heart and circulation, kidney and osmoregulation, metabolism, and thermoregulation. nThis course fulfills the same requirement as BIO 84.
Terms: Spr | Units: 4

BIOHOPK 85: Evolution

Principles of micro- and macro-evolution from molecular genetics to the development of biological diversity. Adaptation, divergence and natural selection in the past and in contemporary ecological settings. Evolution of humans and human-caused evolution. Emphasis on major body plans in the sea and ocean examples of major evolutionary processes.nThis course fulfills the same requirements as BIO 85.
Terms: Spr | Units: 4

BIOHOPK 150H: Ecological Mechanics (BIOHOPK 250H)

(Graduate students register for 250H.) The principles of life's physical interactions. We will explore basic physics. fluid mechanics, thermal dynamics, and materials science to see how the principles of these fields can be used to investigate ecology at levels from the individual to the community. Topics include: diffusion, boundary layers, fluid-dynamic forces, locomotion, heat-budget models, fracture mechanics, adhesion, beam theory, the statistics of extremes, and the theory of self-organization. Open to students from all backgrounds. Some familiarity with basic physics and calculus advantageous but not necessary.
Last offered: Spring 2016 | Units: 3 | UG Reqs: WAY-SMA

BIOHOPK 153H: Current Topics and Concepts in Quantitative Fish Dynamics and Fisheries Management (BIOHOPK 253H)

(Graduate students register for 253H) The course will focus on extensive reading of seminal and reference papers published in the literature in the last decade on modeling population biology, community dynamics and fishery management in the marine environment. Basic knowledge of population dynamics is welcome. The goal is to develop an appreciation on both traditional and cutting-edge modeling approaches to study the dynamics and management of marine populations subjected to natural or anthropogenic shocks and pressures.
Last offered: Spring 2015 | Units: 1

BIOHOPK 161H: Invertebrate Zoology (BIOHOPK 261H)

(Graduate students register for 261H.) Survey of invertebrate diversity emphasizing form and function in a phylogenetic framework. Morphological diversity, life histories, physiology, and ecology of the major invertebrate groups, concentrating on local marine forms as examples. Current views on the phylogenetic relationships and evolution of the invertebrates. Lectures, lab, plus field trips. Satisfies Central Menu Area 3 for Bio majors.
Terms: Win | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: ; Watanabe, J. (PI)

BIOHOPK 162H: Comparative Animal Physiology (BIOHOPK 262H)

(Graduate students register for 262H.) How animals work. Topics: physiology of respiration, circulation, energy metabolism, thermal regulation, osmotic regulation, muscle physiology, and locomotion. Evolutionary and ecological physiology. Lectures, lab, and field research. An option to combine the course work with a more intensive research focus, with more units, is available. Satisfies Central Menu Area 3 for Bio majors. Prerequisite: Consent of instructor.
Terms: Win | Units: 5 | UG Reqs: GER: DB-NatSci
Instructors: ; Block, B. (PI)

BIOHOPK 163H: Oceanic Biology (BIOHOPK 263H)

(Graduate students register for 263H.) How the physics and chemistry of the oceanic environment affect marine plants and animals. Topics: seawater and ocean circulation, separation of light and nutrients in the two-layered ocean, oceanic food webs and trophic interactions, oceanic environments, biogeography, and global change. Lectures, discussion, and field trips. Satisfies Central Menu Area 4 for Bio majors. Recommended: PHYSICS 21 or 51, CHEM 31, or consent of instructor.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIOHOPK 172H: Marine Ecology: From Organisms to Ecosystems (BIOHOPK 272H)

(Graduate students register for 272H.) This course incorporates the approaches of experimental ecology, biomechanics (ecomechanics), and physiology to develop an integrated perspective on the factors that govern the structures of marine ecosystems and how environment change, including anthropogenic influences, affects ecosystems' species composition and health. Focus is on rocky intertidal, kelp forest, estuarine, and midwater ecosystems of Monterey Bay. Experimental projects done in the field offer experience in a variety of ecological techniques and in analysis of ecological data. Students will engage in presentation and debates of current topics in marine ecology and conservation. Satisfies Central Menu Area 4 for Bio majors. Prerequisite: consent of instructor. Fulfills WIM in Biology.
Terms: Win | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: ; Micheli, F. (PI)

BIOHOPK 173H: Marine Conservation Biology (BIOHOPK 273H)

(Graduate students register for 273H.). Introduction to the key concepts of ecology and policy relevant to marine conservation issues at the population to ecosystems level. Focus on the origin and maintenance of biodiversity and conservation applications from both the biology and policy perspectives (for example, endangered species, captive breeding, reserve design, habitat fragmentation, ecosystem restoration/rehabilitation). Also includes emerging approaches such as ecosystem based management, ocean planning, and coupled social-ecological systems. The course will include lectures, readings and discussions of primary literature, and attendance at seminars with visiting scholars. Prerequisite: introductory biology; suggested: a policy and/or introductory ecology course.
Terms: Spr | Units: 4 | Repeatable for credit (up to 99 units total)

BIOHOPK 173HA: Marine Conservation Biology - Seminar and Discussion Only (BIOHOPK 273HA)

(Graduate students register for 273HA.). Introduction to the key concepts of ecology and policy relevant to marine conservation issues at the population to ecosystems level. Focus on the origin and maintenance of biodiversity and conservation applications from both the biology and policy perspectives (for example, endangered species, captive breeding, reserve design, habitat fragmentation, ecosystem restoration/rehabilitation). Also includes emerging approaches such as ecosystem based management, ocean planning, and coupled social-ecological systems. The course will include lectures, readings and discussions of primary literature, and attendance at seminars with visiting scholars. Prerequisite: introductory biology; suggested: a policy and/or introductory ecology course.nStudents should enroll in this course if they are only joining the seminar and discussion. Students who will engage in the full course should enroll in BIOHOPK 173H/273H.
Terms: Spr | Units: 1-2

BIOHOPK 174H: Experimental Design and Probability (BIOHOPK 274H)

(Graduate students register for 274H.) Variability is an integral part of biology. Introduction to probability and its use in designing experiments to address biological problems. Focus is on analysis of variance, when and how to use it, why it works, and how to interpret the results. Design of complex, but practical, asymmetrical experiments and environmental impact studies, and regression and analysis of covariance. Computer-based data analysis. Prerequisite: Biology core or consent of instructor.
Terms: Win, Spr | Units: 3 | UG Reqs: GER: DB-NatSci, GER:DB-Math, WAY-AQR, WAY-FR

BIOHOPK 177H: Dynamics and Management of Marine Populations (BIOHOPK 277H)

(Graduate students register for 277H.) Course examines the ecological factors and processes that control natural and harvested marine populations. Course emphasizes mathematical models as tools to assess the dynamics of populations and to derive projections of their demographic fate under different management scenarios. Course objectives will be met by a combination of theoretical lectures, assigned readings and class discussions, case study analysis and interactive computer sessions.
Terms: Win | Units: 4 | UG Reqs: WAY-AQR, WAY-FR | Repeatable 2 times (up to 8 units total)
Instructors: ; De Leo, G. (PI)

BIOHOPK 180H: Air and Water (BIOHOPK 280H)

(Graduate students register for 280H.) Introduction to environmental physics. The physical properties of life's fluids compared and contrasted. How and why life has evolved differently on land than in water. Topics: density, viscosity, diffusion, thermal properties, sound, light, evaporation, and surface tension. Recommended: PHYSICS 21, 23, or 51, 53; calculus; Biology core; or consent of instructor
Last offered: Autumn 2013 | Units: 3

BIOHOPK 182H: Stanford at Sea (BIOHOPK 323H, EARTHSYS 323, ESS 323)

(Graduate students register for 323H.) Five weeks of marine science including oceanography, marine physiology, policy, maritime studies, conservation, and nautical science at Hopkins Marine Station, followed by five weeks at sea aboard a sailing research vessel in the Pacific Ocean. Shore component comprised of three multidisciplinary courses meeting daily and continuing aboard ship. Students develop an independent research project plan while ashore, and carry out the research at sea. In collaboration with the Sea Education Association of Woods Hole, MA. Only 6 units may count towards the Biology major.
Last offered: Spring 2017 | Units: 16 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIOHOPK 185H: Ecology and Conservation of Kelp Forest Communities (BIOHOPK 285H)

(Graduate students register for 285H.) Five week course. Daily lectures, labs, and scuba dives focused on kelp forest biology. Topics include identification and natural history of resident organisms, ecological processes that maintain biodiversity and community organization, field methods, data analysis, and research diving techniques. Class projects contribute to ongoing studies associated with Hopkins Marine Life Observatory. It is recommended that students complete one of Stanford's Scientific Diver Training sessions, offered during spring break and the week before the course starts, although this is not a requirement. Prerequisites: consent of instructor; advanced scuba certification and scuba equipment.
Terms: Sum | Units: 5 | UG Reqs: WAY-SMA
Instructors: ; Watanabe, J. (PI)

BIOHOPK 187H: Sensory Ecology (BIOHOPK 287H)

(Graduate students register for 287H.) Topics: the ways animals receive, filter, and process information gleaned from the environment, sensory receptor mechanisms, neural processing, specialization to life underwater, communication within and between species, importance of behavior to ecosystem structure and dynamics, impact of acoustic and light pollution on marine animals. Emphasis is on the current scientific literature.
Terms: Win | Units: 2 | UG Reqs: WAY-SMA
Instructors: ; Thompson, S. (PI)

BIOHOPK 189H: Sustainability and Marine Ecosystems (BIOHOPK 289H)

(Graduate students register for 289H.) The health of marine ecosystems is in decline due to overfishing, pollution, habitat damage, invasive species, and climate change. Because human communities are tightly coupled to coastal marine resources, understanding pathways to sustainability require understanding as much about humans as about the ocean. In this course, we explore factors that contribute to the sustainability and resilience of marine ecosystems and the human communities that depend upon them. This course is based on readings in the primary literature, discussions, and student projects.
Last offered: Spring 2012 | Units: 3

BIOHOPK 198H: Directed Instruction or Reading

May be taken as a prelude to research and may also involve participation in a lab or research group seminar and/or library research. Credit for work arranged with out-of-department instructors restricted to Biology majors and requires department approval. May be repeated for credit. (Staff)
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit

BIOHOPK 199H: Undergraduate Research

Qualified undergraduates undertake individual work in the fields listed under 300H. Arrangements must be made by consultation or correspondence.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit

BIOHOPK 234H: Topics in Comparative and Environmental Physiology

Seminar and discussion focused on current topics and research at the interface of physiology and ecology
Terms: Spr | Units: 1
Instructors: ; Goldbogen, J. (PI)

BIOHOPK 250H: Ecological Mechanics (BIOHOPK 150H)

(Graduate students register for 250H.) The principles of life's physical interactions. We will explore basic physics. fluid mechanics, thermal dynamics, and materials science to see how the principles of these fields can be used to investigate ecology at levels from the individual to the community. Topics include: diffusion, boundary layers, fluid-dynamic forces, locomotion, heat-budget models, fracture mechanics, adhesion, beam theory, the statistics of extremes, and the theory of self-organization. Open to students from all backgrounds. Some familiarity with basic physics and calculus advantageous but not necessary.
Last offered: Spring 2016 | Units: 3

BIOHOPK 253H: Current Topics and Concepts in Quantitative Fish Dynamics and Fisheries Management (BIOHOPK 153H)

(Graduate students register for 253H) The course will focus on extensive reading of seminal and reference papers published in the literature in the last decade on modeling population biology, community dynamics and fishery management in the marine environment. Basic knowledge of population dynamics is welcome. The goal is to develop an appreciation on both traditional and cutting-edge modeling approaches to study the dynamics and management of marine populations subjected to natural or anthropogenic shocks and pressures.
Last offered: Spring 2015 | Units: 1

BIOHOPK 261H: Invertebrate Zoology (BIOHOPK 161H)

(Graduate students register for 261H.) Survey of invertebrate diversity emphasizing form and function in a phylogenetic framework. Morphological diversity, life histories, physiology, and ecology of the major invertebrate groups, concentrating on local marine forms as examples. Current views on the phylogenetic relationships and evolution of the invertebrates. Lectures, lab, plus field trips. Satisfies Central Menu Area 3 for Bio majors.
Terms: Win | Units: 5
Instructors: ; Watanabe, J. (PI)

BIOHOPK 262H: Comparative Animal Physiology (BIOHOPK 162H)

(Graduate students register for 262H.) How animals work. Topics: physiology of respiration, circulation, energy metabolism, thermal regulation, osmotic regulation, muscle physiology, and locomotion. Evolutionary and ecological physiology. Lectures, lab, and field research. An option to combine the course work with a more intensive research focus, with more units, is available. Satisfies Central Menu Area 3 for Bio majors. Prerequisite: Consent of instructor.
Terms: Win | Units: 5
Instructors: ; Block, B. (PI)

BIOHOPK 263H: Oceanic Biology (BIOHOPK 163H)

(Graduate students register for 263H.) How the physics and chemistry of the oceanic environment affect marine plants and animals. Topics: seawater and ocean circulation, separation of light and nutrients in the two-layered ocean, oceanic food webs and trophic interactions, oceanic environments, biogeography, and global change. Lectures, discussion, and field trips. Satisfies Central Menu Area 4 for Bio majors. Recommended: PHYSICS 21 or 51, CHEM 31, or consent of instructor.
Terms: Win | Units: 4

BIOHOPK 272H: Marine Ecology: From Organisms to Ecosystems (BIOHOPK 172H)

(Graduate students register for 272H.) This course incorporates the approaches of experimental ecology, biomechanics (ecomechanics), and physiology to develop an integrated perspective on the factors that govern the structures of marine ecosystems and how environment change, including anthropogenic influences, affects ecosystems' species composition and health. Focus is on rocky intertidal, kelp forest, estuarine, and midwater ecosystems of Monterey Bay. Experimental projects done in the field offer experience in a variety of ecological techniques and in analysis of ecological data. Students will engage in presentation and debates of current topics in marine ecology and conservation. Satisfies Central Menu Area 4 for Bio majors. Prerequisite: consent of instructor. Fulfills WIM in Biology.
Terms: Win | Units: 5
Instructors: ; Micheli, F. (PI)

BIOHOPK 273H: Marine Conservation Biology (BIOHOPK 173H)

(Graduate students register for 273H.). Introduction to the key concepts of ecology and policy relevant to marine conservation issues at the population to ecosystems level. Focus on the origin and maintenance of biodiversity and conservation applications from both the biology and policy perspectives (for example, endangered species, captive breeding, reserve design, habitat fragmentation, ecosystem restoration/rehabilitation). Also includes emerging approaches such as ecosystem based management, ocean planning, and coupled social-ecological systems. The course will include lectures, readings and discussions of primary literature, and attendance at seminars with visiting scholars. Prerequisite: introductory biology; suggested: a policy and/or introductory ecology course.
Terms: Spr | Units: 4 | Repeatable for credit (up to 99 units total)

BIOHOPK 273HA: Marine Conservation Biology - Seminar and Discussion Only (BIOHOPK 173HA)

(Graduate students register for 273HA.). Introduction to the key concepts of ecology and policy relevant to marine conservation issues at the population to ecosystems level. Focus on the origin and maintenance of biodiversity and conservation applications from both the biology and policy perspectives (for example, endangered species, captive breeding, reserve design, habitat fragmentation, ecosystem restoration/rehabilitation). Also includes emerging approaches such as ecosystem based management, ocean planning, and coupled social-ecological systems. The course will include lectures, readings and discussions of primary literature, and attendance at seminars with visiting scholars. Prerequisite: introductory biology; suggested: a policy and/or introductory ecology course.nStudents should enroll in this course if they are only joining the seminar and discussion. Students who will engage in the full course should enroll in BIOHOPK 173H/273H.
Terms: Spr | Units: 1-2

BIOHOPK 274: Hopkins Microbiology Course (BIO 274S, CEE 274S, ESS 253S)

(Formerly GES 274S.) Four-week, intensive. The interplay between molecular, physiological, ecological, evolutionary, and geochemical processes that constitute, cause, and maintain microbial diversity. How to isolate key microorganisms driving marine biological and geochemical diversity, interpret culture-independent molecular characterization of microbial species, and predict causes and consequences. Laboratory component: what constitutes physiological and metabolic microbial diversity; how evolutionary and ecological processes diversify individual cells into physiologically heterogeneous populations; and the principles of interactions between individuals, their population, and other biological entities in a dynamically changing microbial ecosystem. Prerequisites: CEE 274A and CEE 274B, or equivalents.
Terms: Sum | Units: 3-12 | Repeatable for credit

BIOHOPK 274H: Experimental Design and Probability (BIOHOPK 174H)

(Graduate students register for 274H.) Variability is an integral part of biology. Introduction to probability and its use in designing experiments to address biological problems. Focus is on analysis of variance, when and how to use it, why it works, and how to interpret the results. Design of complex, but practical, asymmetrical experiments and environmental impact studies, and regression and analysis of covariance. Computer-based data analysis. Prerequisite: Biology core or consent of instructor.
Terms: Win, Spr | Units: 3

BIOHOPK 275H: Synthesis in Ecology

Introduction to frameworks and approaches to synthesizing large data sets, including meta-analysis and permutational multivariate analysis of variance. Hands-on data analysis sessions. May be repeated for credit.
Last offered: Winter 2012 | Units: 2

BIOHOPK 276H: Estimates and Errors: The Theory of Scientific Measurement

Measurement plays a fundamental role in science, but many biologists have no formal training in what it means to measure something. Errors are inevitable in any measurement. Which are inherent, and which can be controlled? How do errors propagate? How can you decide which data to reject? When are uncertainties normal? In this course we will work our way into the theory of measurement, covering some topics that overlap with inferential statistics (but from a new and perhaps more intuitive perspective), and extending beyond those basics to include spectral analysis and the dangers of measurement in the digital realm.
Terms: Aut | Units: 3
Instructors: ; Denny, M. (PI)

BIOHOPK 277H: Dynamics and Management of Marine Populations (BIOHOPK 177H)

(Graduate students register for 277H.) Course examines the ecological factors and processes that control natural and harvested marine populations. Course emphasizes mathematical models as tools to assess the dynamics of populations and to derive projections of their demographic fate under different management scenarios. Course objectives will be met by a combination of theoretical lectures, assigned readings and class discussions, case study analysis and interactive computer sessions.
Terms: Win | Units: 4 | Repeatable 2 times (up to 8 units total)
Instructors: ; De Leo, G. (PI)

BIOHOPK 280H: Air and Water (BIOHOPK 180H)

(Graduate students register for 280H.) Introduction to environmental physics. The physical properties of life's fluids compared and contrasted. How and why life has evolved differently on land than in water. Topics: density, viscosity, diffusion, thermal properties, sound, light, evaporation, and surface tension. Recommended: PHYSICS 21, 23, or 51, 53; calculus; Biology core; or consent of instructor
Last offered: Autumn 2013 | Units: 3

BIOHOPK 285H: Ecology and Conservation of Kelp Forest Communities (BIOHOPK 185H)

(Graduate students register for 285H.) Five week course. Daily lectures, labs, and scuba dives focused on kelp forest biology. Topics include identification and natural history of resident organisms, ecological processes that maintain biodiversity and community organization, field methods, data analysis, and research diving techniques. Class projects contribute to ongoing studies associated with Hopkins Marine Life Observatory. It is recommended that students complete one of Stanford's Scientific Diver Training sessions, offered during spring break and the week before the course starts, although this is not a requirement. Prerequisites: consent of instructor; advanced scuba certification and scuba equipment.
Terms: Sum | Units: 5
Instructors: ; Watanabe, J. (PI)

BIOHOPK 287H: Sensory Ecology (BIOHOPK 187H)

(Graduate students register for 287H.) Topics: the ways animals receive, filter, and process information gleaned from the environment, sensory receptor mechanisms, neural processing, specialization to life underwater, communication within and between species, importance of behavior to ecosystem structure and dynamics, impact of acoustic and light pollution on marine animals. Emphasis is on the current scientific literature.
Terms: Win | Units: 2
Instructors: ; Thompson, S. (PI)

BIOHOPK 289H: Sustainability and Marine Ecosystems (BIOHOPK 189H)

(Graduate students register for 289H.) The health of marine ecosystems is in decline due to overfishing, pollution, habitat damage, invasive species, and climate change. Because human communities are tightly coupled to coastal marine resources, understanding pathways to sustainability require understanding as much about humans as about the ocean. In this course, we explore factors that contribute to the sustainability and resilience of marine ecosystems and the human communities that depend upon them. This course is based on readings in the primary literature, discussions, and student projects.
Last offered: Spring 2012 | Units: 3

BIOHOPK 290H: Teaching of Biological Science

Open to upper-division undergraduates and graduate students. Practical experience in teaching lab biology or serving as an assistant in a lecture course. Prerequisite: consent of instructor.nn (Staff)
Terms: Win, Spr, Sum | Units: 1-15 | Repeatable for credit

BIOHOPK 299H: Advanced Topics in Marine Conservation

Graduate students only. Topics will change from year to year but will include such topics as sustainable fisheries, protected areas, ocean planning, social-ecological systems, dynamic management, sustainable seafood, and impacts of climate change
Terms: Win, Spr | Units: 2 | Repeatable 4 times (up to 2 units total)
Instructors: ; Crowder, L. (PI)

BIOHOPK 300H: Research

Graduate study involving original work undertaken with staff in the fields indicated. B. Block: Comparative Vertebrate Physiology (biomechanics, metabolic physiology and phylogeny of pelagic fishes, evolution of endothermy); L. Crowder: Marine ecology, fisheries, bycatch, integrating science and policy, marine conservation; G. De Leo: Population dynamics and management, wildlife diseases, environmental policies and sustainable development; M. Denny: Biomechanics (the mechanical properties of biological materials and their consequences for animal size, shape, and performance); W. Gilly: Neurobiology (analysis of giant axon systems in marine invertebrates from molecular to behavioral levels); J. Goldbogen: Physiological and Behavioral Ecology (functional morphology and biomechanics of marine organisms): C. Lowe: Evolution of Development (origin of chordates, early evolution of body plans); F. Micheli: Marine Ecology (species interactions and community ecology, scale-dependent aspects of community organization, marine conservation and design of multi-species marine protected areas, behavioral ecology); S. Palumbi: Molecular Evolution (mechanisms of speciation, genetic differentiations of populations, use of molecular tools in conservation biology, design of marine protected areas); S. Thompson: Neurobiology (neuronal control of behavior and mechanisms of ion permeation, signal transduction, calcium homeostasis, and neutrotransmission); J. Watanabe: Marine Ecology (kelp forest ecology and invertebrate zoology).
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit

BIOHOPK 315H: Career Development for Graduate Students

The course will cover multiple skills required to succeed in graduate school and beyond, including fund raising, publishing, selecting career options, job application and negotiation, and teaching, through lectures, group discussions, and practical excercises.
Last offered: Autumn 2016 | Units: 2

BIOHOPK 323H: Stanford at Sea (BIOHOPK 182H, EARTHSYS 323, ESS 323)

(Graduate students register for 323H.) Five weeks of marine science including oceanography, marine physiology, policy, maritime studies, conservation, and nautical science at Hopkins Marine Station, followed by five weeks at sea aboard a sailing research vessel in the Pacific Ocean. Shore component comprised of three multidisciplinary courses meeting daily and continuing aboard ship. Students develop an independent research project plan while ashore, and carry out the research at sea. In collaboration with the Sea Education Association of Woods Hole, MA. Only 6 units may count towards the Biology major.
Last offered: Spring 2017 | Units: 16

BIOHOPK 330H: Scientific Writing

This writer's seminar will workshop the elements of good scientific writing by focusing on a paper's Introduction. We will chart the elements of an effective Introduction, designed for different audiences and types of scientific journals. The course will provide participants with the chance to craft an Introduction to a current paper or proposal and have it evaluated in light of the ideal structure we define.
Terms: Win | Units: 2
Instructors: ; Palumbi, S. (PI)

BIOHOPK 801H: TGR Project

Terms: Aut, Win, Spr, Sum | Units: 0 | Repeatable for credit

BIOHOPK 802H: TGR Dissertation

Terms: Aut, Win, Spr, Sum | Units: 0 | Repeatable for credit
© Stanford University | Terms of Use | Copyright Complaints