Print Settings
 

ENERGY 20N: Technology in the Greenhouse

The evidence that human activities are changing the climate is overwhelming. Energy use is woven throughout the fabric of modern societies, and energy systems are also a primary way that humans interact with the global Earth systems like climate. We know enough about the potential impacts of climate change to see that we need to transform the world¿s energy systems to a much cleaner set of technologies with much lower greenhouse gas emissions. Economies that use energy in a clean, cost-effective way will be much more competitive in the future. The clean energy transition is now underway, with reductions in coal use and rapid growth in solar and wind deployment, but there is much more to do to limit the adverse impacts of climate change. This seminar explores technology options available to make the changes needed, in the developed and developing worlds. There is no shortage of energy available for our use. Instead, the challenge is to convert those energy resources into services like electricity and transportation, and that conversion requires technology, as well as policies and markets that enable innovation. The scale of the world¿s energy systems is dauntingly large, and we will need a well-diversified set of options to meet the challenge. Wind, solar, nuclear, carbon capture and storage for fossil fuel use, modified agriculture, electric (and automated) vehicles, advanced air conditioning, and many other technology options exist. We will consider these technologies and ask what barriers will have to be addressed if they are to be deployed at a scale large enough to reduce the impact climate change. The format will be discussions of technologies and their potential with a project and student presentations toward the end of the quarter.
Terms: Spr | Units: 3 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: ; Orr, F. (PI); Jiang, J. (TA)

ENERGY 101A: Energizing California

A weekend field trip featuring renewable and nonrenewable energy installations in Northern California. Tour geothermal, bioenergy, and natural gas field sites with expert guides from the Department of Energy Resources Engineering. Requirements: One campus meeting and weekend field trip. Enrollment limited to 25. Freshman have first choice.
Terms: Spr | Units: 1 | Grading: Satisfactory/No Credit

ENERGY 102: Fundamentals of Renewable Power (EARTHSYS 102)

Do you want a much better understanding of renewable power technologies? Did you know that wind and solar are the fastest growing forms of electricity generation? Are you interested in hearing about the most recent, and future, designs for green power? Do you want to understand what limits power extraction from renewable resources and how current designs could be improved? This course dives deep into these and related issues for wind, solar, biomass, geothermal, tidal and wave power technologies. We welcome all student, from non-majors to MBAs and grad students. If you are potentially interested in an energy or environmental related major, this course is particularly useful. Recommended: Math 21 or 42.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit

ENERGY 104: Sustainable Energy for 9 Billion

This course explores the transition to a sustainable energy system at large scales (national and global), and over long time periods (decades). Explores the drivers of global energy demand and the fundamentals of technologies that can meet this demand sustainably. Focuses on constraints affecting large-scale deployment of technologies, as well as inertial factors affecting this transition. Problems will involve modeling global energy demand, deployment rates for sustainable technologies, technological learning and economics of technical change. Recommended: ENERGY 101, 102.
Terms: Spr | Units: 3 | UG Reqs: WAY-AQR | Grading: Letter (ABCD/NP)

ENERGY 110: Engineering Economics

The success of energy projects and companies is judged by technical, economic and financial criteria. This course will introduce concepts of engineering economy, e.g., time value of money, life cycle costs and financial metrics, and explore their application to the business of energy. We will use case studies, business school cases and possibly industry guest lecturers. Examples from the hydrocarbon businesses that dominate energy today will provide the framework for the analysis of both conventional and renewable energy.
Terms: Spr | Units: 3 | Grading: Letter (ABCD/NP)

ENERGY 123: When Technology Meets Reality; An In-depth Look at the Deepwater Horizon Blowout and Oil Spill

The Deepwater Horizon blowout and spill in April 2010 occurred on one of the most advanced deepwater drilling rigs in the world operated by one of the most experienced companies. In this course we will look at and discuss the technologies and management practices involved in deepwater drilling and discuss how an accident like this happens and what could have been done differently to avoid it. We will focus on the Horizon and also look briefly at other high profile industrial and technological accidents.
Terms: Spr | Units: 1 | Grading: Letter or Credit/No Credit
Instructors: ; Sears, R. (PI)

ENERGY 141: Seismic Reservoir Characterization (ENERGY 241, GEOPHYS 241A)

(Same as GP241) Practical methods for quantitative characterization and uncertainty assessment of subsurface reservoir models integrating well-log and seismic data. Multidisciplinary combination of rock-physics, seismic attributes, sedimentological information and spatial statistical modeling techniques. Student teams build reservoir models using limited well data and seismic attributes typically available in practice, comparing alternative approaches. Software provided (SGEMS, Petrel, Matlab). Offered every other year.nRecommended: ERE240/260, or GP222/223, or GP260/262 or GES253/257; ERE246, GP112
Terms: Spr | Units: 3-4 | Grading: Letter (ABCD/NP)

ENERGY 155: Undergraduate Report on Energy Industry Training

On-the-job practical training under the guidance of on-site supervisors. Required report detailing work activities, problems, assignments and key results. Prerequisite: written consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit | Grading: Letter or Credit/No Credit

ENERGY 175: Well Test Analysis

Lectures, problems. Application of solutions of unsteady flow in porous media to transient pressure analysis of oil, gas, water, and geothermal wells. Pressure buildup analysis and drawdown. Design of well tests. Computer-aided interpretation.
Terms: Spr | Units: 3 | Repeatable for credit | Grading: Letter or Credit/No Credit

ENERGY 192: Undergraduate Teaching Experience

Leading field trips, preparing lecture notes, quizzes under supervision of the instructor. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit | Grading: Letter or Credit/No Credit

ENERGY 193: Undergraduate Research Problems

Original and guided research problems with comprehensive report. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit | Grading: Letter or Credit/No Credit

ENERGY 194: Special Topics in Energy and Mineral Fluids

May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Kovscek, A. (PI)

ENERGY 199: Senior Project and Seminar in Energy Resources

Individual or group capstone project in Energy Resources Engineering. Emphasis is on report preparation. May be repeated for credit.
Terms: Spr | Units: 3-4 | Repeatable for credit | Grading: Letter or Credit/No Credit

ENERGY 203: The Energy Transformation Collaborative

Solving the global energy challenge will require the creation and successful scale-up of hundreds of new ventures. This project-based course provides a launchpad for the development and creation of transformational energy ventures and innovation models. Interdisciplinary teams will research, analyze, and develop detailed launch plans for high-impact opportunities in the context of the new energy venture development framework offered in this course.
Terms: Aut, Win, Spr | Units: 1-3 | Grading: Letter (ABCD/NP)

ENERGY 204: Achieving Universal Energy Access by 2030: Can it be done?

Today 1.2 billion people have no access to electricity; many more don't have power that is reliable. Activities the developed world counts on for economic growth are severely limited where there isn't reliable electricity. Cost reductions in distributed, renewable energy generation and battery storage technologies are creating opportunities to bring affordable power to communities that have never had it. This course will examine what will need to be in place so that electricity can reach everyone by 2030.
Terms: Spr | Units: 2-3 | Grading: Letter (ABCD/NP)
Instructors: ; Benson, S. (PI); Ray, S. (TA)

ENERGY 212: Environmental Aspects of Oil and Gas Production

This course introduces students to the major environmental aspects of oil and gas production, including law, policy, regulation, impact assessment, and mitigation. Through readings, lectures, homework, in-class activities, and case studies, students learn about the major state/federal laws and regulatory programs governing oil and gas in the U.S., industry permitting and compliance strategies, and current public stakeholder issues/challenges (with a particular focus on climate change and water management). Emerging legislative/regulatory trends, advocacy approaches, and sustainability concepts also are explored.
Terms: Spr | Units: 1 | Grading: Letter or Credit/No Credit

ENERGY 214: The Global Price of Oil

Understanding the current and future price of oil requires the synthesis of geologic, engineering, financial, geopolitical, and macroeconomic information. In this seminar, we will build a global supply curve for petroleum by studying the marginal and full-cycle production costs for each of the major resource categories. We will study how reserve classification varies globally, and how global petroleum resources and reserves have changed and are likely to change over time. We will further investigate how the time lag between resource discovery, project sanctioning, and full production will affect future supply. Finally, we will study the elasticity of oil demand and how that demand is likely to change over time as the developing world gets richer and as competition from other energy sources increases.
Terms: Spr | Units: 2 | Grading: Letter or Credit/No Credit
Instructors: ; House, K. (PI); Guo, H. (TA)

ENERGY 222: Advanced Reservoir Engineering

Lectures, problems. General flow equations, tensor permeabilities, steady state radial flow, skin, and succession of steady states. Injectivity during fill-up of a depleted reservoir, injectivity for liquid-filled reservoirs. Flow potential and gravity forces, coning. Displacements in layered reservoirs. Transient radial flow equation, primary drainage of a cylindrical reservoir, line source solution, pseudo-steady state. May be repeated for credit. Prerequisite: 221.
Terms: Spr | Units: 3 | Repeatable for credit | Grading: Letter (ABCD/NP)

ENERGY 225: Theory of Gas Injection Processes

Lectures, problems. Theory of multicomponent, multiphase flow in porous media. Miscible displacement: diffusion and dispersion, convection-dispersion equations and its solutions. Method of characteristic calculations of chromatographic transport of multicomponent mixtures. Development of miscibility and interaction of phase behavior with heterogeneity. May be repeated for credit. Prerequisite: CME 200.
Terms: Spr | Units: 3 | Repeatable for credit | Grading: Letter (ABCD/NP)
Instructors: ; Orr, F. (PI); Li, Y. (TA)

ENERGY 226: Thermal Recovery Methods

Theory and practice of thermal recovery methods: steam drive, cyclic steam injections, and in situ combustion. Models of combined mass and energy transport. Estimates of heated reservoir volume and oil recovery performance. Wellbore heat losses, recovery production, and field examples.
Terms: Spr | Units: 3 | Grading: Letter (ABCD/NP)

ENERGY 230: Advanced Topics in Well Logging

State of the art tools and analyses; the technology, rock physical basis, and applications of each measurement. Hands-on computer-based analyses illustrate instructional material. Guest speakers on formation evaluation topics. Prerequisites: 130 or equivalent; basic well logging; and standard practice and application of electric well logs.
Terms: Spr | Units: 3 | Grading: Letter (ABCD/NP)

ENERGY 241: Seismic Reservoir Characterization (ENERGY 141, GEOPHYS 241A)

(Same as GP241) Practical methods for quantitative characterization and uncertainty assessment of subsurface reservoir models integrating well-log and seismic data. Multidisciplinary combination of rock-physics, seismic attributes, sedimentological information and spatial statistical modeling techniques. Student teams build reservoir models using limited well data and seismic attributes typically available in practice, comparing alternative approaches. Software provided (SGEMS, Petrel, Matlab). Offered every other year.nRecommended: ERE240/260, or GP222/223, or GP260/262 or GES253/257; ERE246, GP112
Terms: Spr | Units: 3-4 | Grading: Letter (ABCD/NP)

ENERGY 273: Special Topics in Energy Resources Engineering

Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit | Grading: Letter or Credit/No Credit

ENERGY 281: Applied Mathematics in Reservoir Engineering

The philosophy of the solution of engineering problems. Methods of solution of partial differential equations: Laplace transforms, Fourier transforms, wavelet transforms, Green's functions, and boundary element methods. Prerequisites: CME 204 or MATH 131, and consent of instructor.
Terms: Spr | Units: 3 | Grading: Letter (ABCD/NP)

ENERGY 294: Electrochemical Energy Storage Systems: Modeling and Estimation

The course focuses on modeling and estimation methods as necessary tools to extract the full potential from Lithium-ion batteries, specifically used in electrified vehicles. The complex nature of a battery system requires that a physics-based approach, in the form of electrochemical models, be used as a modeling platform to develop system-level control algorithms to allow designer to maximize batteries performance and longevity while guaranteeing safety operations. In this course, we will cover 1) first-principles methods to model battery dynamics, 2) electrochemical and control-oriented models, 3) parameter identification problems, 4) estimation algorithms for real-time application. A formal exposure to state space analysis and estimation of dynamical systems will be given.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit

ENERGY 300: Graduate Directed Reading

Independent studies under the direction of a faculty member for which academic credit may properly be allowed.
Terms: Aut, Win, Spr, Sum | Units: 1-7 | Repeatable for credit | Grading: Letter or Credit/No Credit

ENERGY 301: The Energy Seminar (CEE 301, MS&E 494)

Interdisciplinary exploration of current energy challenges and opportunities, with talks by faculty, visitors, and students. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Weyant, J. (PI)

ENERGY 359: Teaching Experience in Energy Resources Engineering

For TAs in Energy Resources Engineering. Course and lecture design and preparation; lecturing practice in small groups. Classroom teaching practice in an Energy Resources Engineering course for which the participant is the TA (may be in a later quarter). Taught in collaboration with the Center for Teaching and Learning.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: ; Gerritsen, M. (PI)

ENERGY 360: Advanced Research Work in Energy Resources Engineering

Graduate-level work in experimental, computational, or theoretical research. Special research not included in graduate degree program. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-10 | Repeatable for credit | Grading: Satisfactory/No Credit

ENERGY 361: Master's Degree Research in Energy Resources Engineering

Experimental, computational, or theoretical research. Advanced technical report writing. Limited to 6 units total.nn (Staff)
Terms: Aut, Win, Spr, Sum | Units: 1-6 | Repeatable for credit | Grading: Satisfactory/No Credit

ENERGY 362: Engineer's Degree Research in Energy Resources Engineering

Graduate-level work in experimental, computational, or theoretical research for Engineer students. Advanced technical report writing. Limited to 15 units total, or 9 units total if 6 units of 361 were previously credited.
Terms: Aut, Win, Spr, Sum | Units: 1-10 | Repeatable for credit | Grading: Satisfactory/No Credit

ENERGY 363: Doctoral Degree Research in Energy Resources Engineering

Graduate-level work in experimental, computational, or theoretical research for Ph.D. students. Advanced technical report writing.
Terms: Aut, Win, Spr, Sum | Units: 1-10 | Repeatable for credit | Grading: Satisfactory/No Credit

ENERGY 365: Special Research Topics in Energy Resources Engineering

Graduate-level research work not related to report, thesis, or dissertation. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit | Grading: Satisfactory/No Credit

ENERGY 801: TGR Project

Terms: Aut, Win, Spr, Sum | Units: 0 | Repeatable for credit | Grading: TGR

ENERGY 802: TGR Dissertation

Terms: Aut, Win, Spr, Sum | Units: 0 | Repeatable for credit | Grading: TGR
© Stanford University | Terms of Use | Copyright Complaints